A Relativistic Fock-Space Coupled Cluster Method: Towards Efficient Execution on GPUs

A. V. Oleynichenko^{1,2}, S. V. Kozlov², A. V. Zaitsevskii^{1,2}, E. Eliav³

¹ NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute, Orlova Roshcha, 188300 Gatchina, Russia

Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1/3, 119991 Moscow, Russia School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel

alexvoleynichenko@gmail.com

Motivation

Relativistic Fock-space coupled cluster method (FS-RCC) – one of the most promising tools for high-precision electronic structure modelling:

- perfectly suitable for molecular spectroscopy problems
- rather clear physical background
- predictable accuracy
 - \rightarrow up to $\sim 10~{\rm cm}^{-1}$ for electronic excitation energies
 - \rightarrow depends on the approximation level: CCSD, CCSDT-1...

But: very high computational complexity!

CCSD model – $O(N^6)$, CCSDT model – $O(N^8)$ N = number of one-particle basis functions (spinors)typical size of the problem: > 500 spinors (diatomic molecule)

Parallelization will help us!

A few GPU-parallelized CC codes were implemented to the date:

- single-reference nonrelativistic CCSD [1] and EOM-CCSD [2]
- up to 10x speedup on GPU! [2]

Coupled Cluster Method

Molecular electronic Hamiltonian:

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{4} \sum_{pqrs} V_{pqrs} a_p^{\dagger} a_q^{\dagger} a_s a_r$$

 h_{pq} one-electron molecular integrals

 V_{pqrs} two-electron molecular integrals (electron repulsion)

We solve the Schrödinger-type equation $H\Psi=E\Psi$ assuming that the wavefunction Ψ is of type:

$$\Psi = \{e^T\}\tilde{\psi}$$
 $T = \sum_{ia} t_i^a a_a^{\dagger} a_i + \sum_{ijab} t_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_j a_i + \dots$

We solve equations for t_i^a , t_{ij}^{ab} – cluster (excitation) amplitudes

Algorithms

Let us analyze the structure of the FS-RCC amplitude equations:

FS-RCC = matrix-matrix multiplications + "tensor" transpositions

Multidimensional arrays are splitted into non-zero dense blocks:

Algorithm: tensor contraction on GPU

Time complexity: $O(N^6)$ for the CCSD model (only t_i^a and t_{ij}^{ab})

Implementation

The new coupled cluster program (called EXP-T) was developed:

- FS-MRCC method: up to 3 open shells
- CC cluster operator: up to CCSDT-3 model
- molecular integrals are imported from DIRAC [5] \rightarrow any relativistic Hamiltonians + properties
- CUDA [3] and OpenMP [4] parallelization
- for more information: http://qchem.pnpi.spb.ru

Benchmark: OpenMP

Problem: excitation energies of the KCs molecule (CCSD model)

Problem size: 362 spinors (medium) CPU: Intel(R) Core(TM) i9-7900X

Compiler: Intel® C++ Compiler 18.0 (-O3 -xHost)
MKL: Intel® Math Kernel Library 18.0 Update 1 for Linux

* DIRAC – the most advanced relativistic quantum chemistry program [5]

To be improved:

• number of disk operations must be reduced

Benchmark: CUDA

Problem: excitation energies of the Rb atom (CCSD model)

Problem size: 182 spinors (small)

GPU: NVIDIA® GeForce® GTX TITAN Black

CPU: AMD FX(TM)-8320(8)
Compiler: Intel® C++ Compiler 19.0 (-O3 -xHost)
MKL: Intel® Math Kernel Library 19.0 Update 3 for Linux

(time in sec) point group	DIRAC17*	EXP-T	EXP-T
	1 CPU core	1 CPU core	1 GPU
$C_{\infty v} \ C_s$	387	334 (1.2x)	1189 <mark>(0.3</mark> x)
	9931	3087 (3.2x)	2300 (4.3x)
C_1	37302	9726 (3.8x)	4825 (7.7 x)

Remarks:

- higher symmetry $(C_1 \to C_{\infty v}) \to \text{more blocks of integrals} \to \text{smaller blocks \& much more metainfo} \to \text{large overheads}$
- practically interesting molecules often have C_1 symmetry!

To be improved:

- disk access asynchronous I/O is required
- asynchronous access to GPU (CUDA streams)
- multi-GPU technology (2, 4, 8 GPUs per node)

Bibliography

- [1] A.E. DePrince III et al. J. Chem. Theory Comput. 7, 1287 (2011)
- 2] I.A. Kaliman, A.I. Krylov. J. Comput. Chem. 38, 842 (2017)
- [3] J. Nickolls et al. ACM Queue. Vol. 6(2), 40 (2008)
- L. Dagum, R. Menon. IEEE Comput. Sci. Eng. 5(1), 46-55 (1998)
- [5] L. Visscher et al., DIRAC, a relativistic ab initio electronic structure program, http://www.diracprogram.org